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This paper designs an energy-quality multilevel framework for the coding and transmission of aerial images, and then 
introduces a scaling-based intra encoder with flexible sampling factor (SF) and quantization parameter (QP). By 
experimentally investigating how different coding configurations affect the complexity-rate-quality characteristics of 
aerial images, this paper derives a configuration estimation model between energy-quality level and appropriate (SF, 
QP) configuration. By utilizing the model, a bivariate control scheme is proposed so as to progressively adjust sender's 
energy consumption under quality constraints. The experimental results show that the proposed scheme can achieve 
better energy-quality tradeoff with a wider quality range, and reduce the energy consumption above a certain quality. 
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The quality-complexity control of image/video coding is 
a critical problem in power-constrained imagery 
applications. Under complexity-rate-quality constraints, 
the coding mechanism with flexible scaling may yield 
the enhanced energy-quality performance than that with 
fixed scaling. The scaling-based coding approaches may 
be classified into two categories: multi-frame coding and 
still image coding. The empirical results in the case of 
multi-frame coding[1-4] show the existence of an optimal 
scaling policy that achieves the maximal quality for a 
certain energy. However, these scaling-based coding 
methods depend on the inter-frame correlation, which 
cannot be directly applied to still images. 

In the case of still image coding, the scaling 
optimization of JPEG compression has been studied[5]. It 
has been shown that with a certain coding rate, an 
optimal sampling ratio exists for the best compression 
quality, but no automatic ratio determination algorithm 
has been proposed. If a fixed scaling ratio is known 
during encoding, the perceptual quality can be improved 
after super-resolution-assisted decoding[6]. Currently, the 
joint video team of ISO/IEC and ITU-T has developed 
the high efficiency video coding (HEVC) standard[7]. 
HEVC intra encoder has the best compression 
performance in the current image codecs, while the 
complexity of HEVC intra encoder is high. Based on the 
HEVC intra encoder, the better portable graphics (BPG) 
format possibly replaces JPEG. When the HEVC intra 
coding mechanism becomes sophisticated, the 
directrate-distortion modeling becomes a very difficult 

task. What's more, the above scaling-based coding 
approaches did not take whether the compression can 
adapt to transmission power constraints into account. 
Therefore, it is necessary to jointly consider the rate, 
complexity and quality for HEVC intra coding.  

As a new type of power-constrained imagery 
applications, aerial images need to be acquired, 
compressed and transmitted for further analysis. The 
large amounts of aerial images have to face such 
problems as high coding and transmission cost. Since the 
content characteristics of an aerial image cannot be 
obtained in advance, the content-adaptive source-channel 
joint coding mechanism is difficultly employed in 
massive aerial imagery[8], so the uniform quantization 
and scaling policy for each image have a more general 
meaning. The computational burden at the sender may 
hinder the widespread adoption of aerial imagery[9]. An 
important property of aerial image is that plenty of 
objects and architectures are manmade. Aerial images 
generally are classified as a texture-rich image type, and 
the encoding consumption of aerial image often exceeds 
that of natural image[10]. At the sender of aerial imagery, 
the energy consumption and compression quality are two 
key indexes which are closely related with the coding 
configuration. 

It is a challenging problem how to reduce the energy 
consumption under quality constraints. One major 
motivation of this work is from the following 
observation: for an expected quality, the sender may 
have spent too many energy resources in encoding and 
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transmitting the image samples whose quality is much 
higher than that needed for the receiver. This paper 
experimentally investigates the impact of different 
coding configurations on complexity, rate and quality. 
The tradeoff between energy consumption and image 
quality can thus be exploited. By deriving a 
configuration estimation model, a bivariate control 
scheme is developed to pre-determine the appropriate 
parameters for any aerial image so as to improve the 
energy-quality multilevel performance for aerial imagery 
applications.  

At a sender of aerial imagery, image coding and 
transmission consume a major portion of total energy. 
Generally speaking, the sender’s energy consumption 
mainly contains two components: the encoding energy 
for acquiring and processing images, and the 
transmission energy for transmitting the data to a remote 
receiver. The encoding energy is a function of 
computational complexity, and the transmission energy is 
related to the amount of transmitted data. In this paper, 
the subscript C denotes an energy-quality multilevel 
control policy. With the control policy C, TC denotes its 
computational complexity in execution time, RC denotes 
its transmission rate in kbit/s, and QC denotes its 
compression quality in PSNR. For a given QC, the 
sender’s energy consumption EC may be expressed as: 

EC=f(TC)+g(RC),                            (1) 
where f(·) denotes the encoding energy as a function of 
execution time, and g(·) denotes the transmission energy 
as a function of transmission rate. Thus with the control 
policy C, the sender may provide an energy-quality level 
(EC, QC). For any aerial image, the encoding power is 
relatively constant over time, which may be accumulated 
by keeping track of the execution time[11]. Therefore, the 
encoding energy can be estimated by multiplying the 
encoding power Penc with its execution time TC  

f(TC)=Penc·TC  ,                             (2) 
where Penc is a constant in J/ms. During image encoding, 
a processor almost operates at full load, so the encoding 
power is close to thermal design power (TDP) of the 
processor. On the other hand, in terms of data 
transmission, it is obvious that more energy is required 
when the transmission rate increases. The transmission 
energy presents a linear relationship with the 
transmission rate. Here, Etr denotes the average 
transmission energy per kbit/s, which depends on 
transmission distance and path loss index. Therefore, the 
transmission energy can be estimated by:  

g(RC)=Etr·RC .                                             (3) 
  As given in Eq.(1), the sender’s energy consumption 
can be further formulated as: 

EC=Penc·TC+Etr·RC=Penc·(TC+λ·RC),             (4) 
where λ=Etr/Penc denotes the transmission-coding energy 
ratio. To obtain multiple energy-quality levels, the 
existing control schemes only adjust the quantization 
parameter (QP) while maintaining a fixed sampling 
factor (SF). Thus, the number of energy-quality levels is 

equal to the number of feasible QP values. In this paper, 
the energy-quality multilevel framework provides 52 
energy-quality levels. Without loss of generality, the 
optimization objective of energy-quality multilevel 
control is to reduce the energy consumption EC subject to 
a certain quality QC, and simultaneously provide a wider 
quality range. 

Besides the QP, the SF is another important coding 
configuration in power-constrained aerial imagery. In 
this paper, a scaling-based HEVC intra encoder is 
introduced so as to obtain the appropriate energy-quality 
multilevel control. At the sender, an original frame is 
firstly downsampled with a certain SF, and then 
compressed by an HEVC intra encoder. At the receiver, 
the image is decoded, and then upsampled to the original 
resolution for further analysis. Fig.1 shows the system 
diagram of scaling-based aerial imagery, where the 
original image X is firstly pre-processed by a 
configuration controller so as to obtain the side 
information such as SF and QP. With a given SF, the 
original image X is downsampled to the image Xd. Then, 
the HEVC intra encoder compresses Xd with a given QP 
that meets the rate constraint. The bitstream generator 
can encapsulate the compressed data and side 
information into the bitstream Y, and then transmits the 
bitstream to the remote receiver by transmission channel. 
At the receiver, the bitstream Y is decoded to the image 
X', and then upsampled to the image X'u at the original 
resolution. The sender needs to select the appropriate 
control policy to reduce the sender’s energy consumption 
while ensuring a certain quality.  
 

 

Fig.1 System diagram for scaling-based aerial 
imagery 
 

The downsampling operation can shrink the original 
image X from W·H pixels to Wd·Hd pixels. Thus, the 
downsampled image Xd is obtained at the Wd·Hd  
resolution. In most cases, the least coding unit is 16×16 
pixels. If (W, H) denotes the size of the original image X, 
the size of its downsampled image Xd may be represented 
as follows:  

 (Wd, Hd)=(W−16×SF, H−16×SF) .            (5) 

After decoding, the upsampling operation can expand 
the  image X' back to W·H pixels. The coding con-
figuration should be determined before employing the
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scaling-based HEVC intra encoder. Under such 
conditions, both encoding energy and transmission 
energy depend on the SF and QP. The appropriate 
coding configuration will be found by heuristically 
performing the scaling-based HEVC intra encoder with 
all feasible (SF, QP) configurations. Based on Eq.(4), the 
following subsections will experimentally investigate the 
impact of different coding configurations on the rate, 
complexity and quality of aerial images, and then derive 
a bivariate control scheme with a configuration 
estimation model. 

Based on the scaling-based HEVC intra encoder, we will 
encode all training images to analyze the 
complexity-rate-quality characteristics of aerial images. 
We consider that SF varies in the range of {1, 2, ..., 49, 50}, 
and QP varies in the range of {0, 1, ..., 50, 51}. Thus, we 
have 50´52 feasible (SF, QP) configurations. The average 
performance of all training images is obtained by 
respectively testing each (SF, QP) configuration. In terms 
of complexity characteristics of aerial image, we measure 
the average execution time in millisecond (ms), which can 
be translated into the encoding energy by using Eq.(2). 
Since SF and QP independently tune configurations, it is 
more easily to illustrate one configuration while fixing the 
other. In Fig.2(a), these curves with different markers are 
generated from the HEVC intra encoder by changing QP. 
In Fig.2(b), for a given QP, the relationship between the 
execution time and SF presents the approximately 
exponential behavior. As can be seen from the two figures, 
the execution time will decrease when the QP or SF value 
increases. 
 

 

 
Fig.2 Complexity analysis: (a) Execution time vs. QP; 
(b) Execution time vs. SF  

In terms of rate characteristics of aerial image, we 
measure the average transmission rate in kbit/s, which 
can be translated into the transmission energy by using 
Eq.(3). The average rates of all training images are 
obtained by respectively testing each (SF, QP) 
configuration. With logarithmic y-axis, Fig.3(a) shows 
the average transmission rate per image vs. QP with 
different SF, where the rate and QP present the 
approximately exponential dependence for a given SF. 
With logarithmic y-axis, Fig.3(b) shows the average 
transmission rate per image vs. SF with different QP, 
where the rate and SF present the approximately linear 
dependence for a given QP. As can be seen from the two 
figures, the transmission rate will decrease when the QP 
or SF value increases.  
 

 

 

Fig.3 Rate analysis: (a) Transmission rate vs. QP; (b) 
Transmission rate vs. SF  
 

In terms of quality characteristics of aerial images, we 
measure the average compression quality in PSNR. When 
SF=1 and QP=0, the average PSNR of all training images 
should be equal to its maximum value. Fig.4(a) shows 
the average PSNR per image vs. QP with different SF, 
where a family of curves are plotted by changing the QP 
with a given SF. If the SF value is fixed, the PSNR will 
decrease when the QP value increases, although the 
PSNR maintains a certain stability under QP=22. Fig.4(b) 
shows the average PSNR per image vs. SF with different 
QP, and these curves are generated by changing SF with 
a given QP. If the QP value is fixed, the PSNR will 
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approximately linearly decrease when the SF value 
increases. 

 

 

 

Fig.4 Quality analysis: (a) PSNR vs. QP; (b) PSNR vs. 
SF 

 
To sum up, larger QP leads to less execution time, 

smaller rate and lower quality. Besides, larger SF also 
presents the similar behavior. As can be seen, these 
figures from Fig.2 to Fig.4 have significantly different 
variation trends, which can be further used to implement 
the double-parameter energy-quality optimization. With a 
higher energy-quality level from 1 to 52, better quality 
may be obtained at the cost of increased energy 
consumption. Based on the above experimental results, 
the next subsection will analyze the statistical 
relationship between energy-quality levels and coding 
configurations, and then develop a model-guided 
bivariate control scheme for determining the appropriate 
SF and QP configuration for testing images. The 
proposed scheme may reduce sender's energy 
consumption under quality constraints.  

The scaling-based HEVC intra encoder executes 
various (SF, QP) configurations and generates a 
complexity-rate-quality space of all training images. In 
order to obtain a more general conclusion, the 
transmission-coding energy ratio λ is further extended, 
which varies from 0.02 to 50 with step size of 0.02. By 
heuristically feeding the average rate and execution time 
into the objective function in Eq.(4), the distribution of 
optimal (SF, QP) may be obtained by exhaustively 
searching the minimum energy consumption subject to a 

certain quality.  

 

 
Fig.5 The distributions of optimal configurations at 
different energy-quality levels: (a) Distribution of 
optimal SF values; (b) Distribution of optimal QP 
values 
 

By analyzing the distribution of optimal SF and QP 
values, we will derive a configuration estimation model 
between energy-quality level and appropriate (SF, QP) 
configuration, and the model consists of two relationship 
functions: the SF-level function and the QP-level 
function. Although the complexity-rate-quality 
characteristics of various images are slightly different, 
the optimal SF or QP values distribute within a small 
range at each energy-quality level. Since the variation is 
limited in a small range, it is possible to derive an 
analytic function for the family of mean SF or mean QP 
values at different energy-quality levels. Based on the 
MATLAB cftool toolbox, the mean of optimal SF or QP 
values at each energy-quality level is used for the curve 
fitting process to find the statistical relationship between 
energy-quality level and (SF, QP) configuration. The 
fitting goodness is quantified by the correlation 
coefficient (R-square). In Fig.6, a dot denotes the mean 
of optimal SF or QP values at a certain level. In the 
goodness of fitting, the R-square of the SF-level function 
is 0.994 3, and that of the QP-level function is 0.988 9. 
As can be seen from each curve, the piecewise fitting 
function is acceptable in R-square, and the turning points 
are set to ensure that the function changes monotonically 
with the level. 
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Fig.6 The curve fitting process: (a) SF-level function; 
(b) QP-level function 
 

By fitting the distribution of mean SF or mean QP values, 
we may derive the following configuration estimation 
model. Based on linear regression, the function parameters 
of curve fitting are estimated from the energy-quality 
statistics of training images. Considering the piecewise 
linear relationship, the configuration estimation model can 
be represented as follows 
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where l denotes an energy-quality level. After deriving 
the configuration estimation model, the training images 
are completely disregarded and the model is then used 
for the testing images. With the model-guided SF and QP, 
the bivariate control scheme can preprocess the testing 
images before they are fed to the scaling-based HEVC 
intra encoder. The model-guided bivariate control 
scheme can progressively adjust sender's energy 
consumption above a certain quality, and improve the 
energy-quality scalability. 

The proposed bivariate control scheme is evaluated in 
this section. All experiments are executed on a DELL 
Tower5810 platform which contains Xeon E5-1603V3 

processor, Ubuntu 14.04 LTS (64 bit) operating system 
and MATLAB R2014a software. The experimental aerial 
images are all from the USC-SIPI dataset[12], and they are 
uniformed into 1 024 pixels ´1 024 pixels with ITU 
BT709 color space, where the 40% aerial images 
(2.2.01~2.2.10) are selected for training and modeling, 
and the rest (2.2.11~2.2.24) for performance testing and 
validation. When deriving the configuration estimation 
model, the training images are respectively encoded by 
changing the SF or QP values. The available SF values 
are {1, 2, 3, …,49, 50}, and the available QP values are 
{0, 1, 2, …, 50, 51}. For a given SF, the output pixels are 
obtained by applying the bicubic interpolation on 
neighboring pixels. When changing the size of an image, 
a sinc-like anti-aliasing filter is applied to limit the 
aliasing effect. In fact, the Penc value doesn’t affect 
model-guided (SF, QP) solution. Here the TDP of the 
E5-1603V3 processor is 140 W. Without loss of 
generality, the encoding power Penc is set to 0.14 J/ms. 
The transmission-coding energy ratio λ varies from 0.02 
to 50 with step size of 0.02. The scaling-based HEVC 
intra encoder is based on the test model reference 
software HM-16.7[13]. The bivariate control scheme is 
compared with two existing control schemes: 
conventional full-size scheme (SF=1)[14] and a fixed 
half-size scheme (SF=32). To reduce the energy 
consumption, the bivariate scheme utilizes the 
configuration estimation model to determine the 
appropriate (SF, QP) configuration. 

After the scaling-based HEVC intra encoder processes 
all testing images with different coding configurations, 
Fig.7 and Fig.8 give some subjective comparisons of 
image reconstruction for the image 2.2.12 and the image 
2.2.24, where the reconstructed images are based on 
typical (SF, QP) configurations. If one coding 
configuration (SF or QP) is fixed, the subjective quality 
will decrease when the other coding configuration (QP 
or SF) increases. These subjective quality comparisons 
show that the scaling-based HEVC intra encoder can 
utilize different coding configurations to obtain similar 
quality but far different energy consumption. Therefore, 
it is possible to further optimize the energy-quality 
performance. 

Due to appropriate image resizing, the energy 
consumption may benefit from the scaling-based HEVC 
intra encoder, which is especially suitable for 
power-constrained aerial imagery. The conventional 
schemes generate different energy-quality levels by only 
changing QP, while the proposed bivariate scheme 
utilizes the (SF, QP) configuration to generate an equal 
number of energy-quality levels. As the encoder scales 
down its energy consumption, the compression quality 
will degrade. With three typical λ cases, Fig.9 shows the 
energy consumption vs. average quality for three control 
schemes, where the energy consumption is expressed 
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with logarithmic coordinate, and a marker point denotes 
an energy-quality level. When the PSNR of reconstructed 
image increases, its energy consumption will also 
increases. The conventional full-size scheme performs 
poorly when the PSNR is high, because a large amount of 
energy is wasted. The fixed half-size scheme performs 
better at low PSNR but the available PSNR range is very 
narrow. Along the x-axis, it can be observed that when 
the PSNR increases, the bivariate control scheme can 
provide a wider quality range and lower energy 
consumption. The energy saving percentage depends on 
the energy-quality level. On the whole, these curves 
show that the bivariate scheme can obtain better 
energy-quality multilevel control performance than the 
conventional schemes. 

  

  

 

Fig.7 The reconstruction comparison of different (SF, 
QP) configurations for the image 2.2.12 

 

  

 

Fig.8 The reconstruction comparison of different (SF, 
QP) configurations for the image 2.2.24 

 

 

 

 

Fig.9 Energy consumption vs. quality for three control 
schemes with typical λ cases: (a) λ=0.02; (b) λ=1; (c) 
λ=50  
 

This paper designs an energy-quality multilevel 
framework for the coding and transmission of aerial 
images, and then introduces a scaling-based HEVC intra 
encoder with flexible SF and QP values. By 
experimentally investigating how different coding 
configurations affect the complexity-rate-quality 
characteristics of aerial images, this paper derives the 
configuration estimation model between energy-quality 
level and (SF, QP) configuration. By utilizing the model, 
this paper proposes the bivariate control scheme so as to 
progressively adjust sender's energy consumption under 
quality constraints. The experimental results show that 
the proposed scheme can significantly reduce the energy 
consumption above a certain quality while providing a 
wider quality range, and thus achieve better 
energy-quality tradeoff than the conventional full-size or 
half-size schemes. 
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